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Abstract—As an alternative to downloading content from a
cellular access network, mobile devices could be used to store
data files and distribute them through device-to-device (D2D)
communication. We consider a D2D-based storage community
that is comprised of mobile users. Assuming that transmitting
data from a base station to a mobile user consumes more energy
than transmitting data between two mobile users, we show that it
can be beneficial to use redundant storage to ensure that datafiles
stay available to the community even if some of the storing users
leave the network. We derive a tractable closed-form equation
stating when redundancy should be used in order to minimize
the expected energy consumption of data retrieval. We find that
replication is the preferred method of adding redundancy as
opposed to regenerating codes. Our findings are verified by
computer simulations.

I. I NTRODUCTION

The amount of mobile data traffic is growing tremendously.
The total global mobile traffic was about885 petabytes per
month at the end of 2012, and is expected to keep increasing
[1]. As traditional techniques for increasing the capacityof
wireless systems have their limits, new ways of reducing the
load of the access network are needed.

Recently, device-to-device (D2D) communication has been
suggested as a means of increasing the capacity and the
throughput of cellular systems, as well as improving the energy
consumption of user devices, see [2]-[4]. As the storage capac-
ity of mobile devices increases, data files could be stored and
retrieved from the mobile users themselves in order to offload
download traffic from the infrastructure network. Distributed
storage in Delay Tolerant, Ad Hoc and D2D networks has been
suggested in [5], [6], [7]. In these, mobile terminals (with
backup connections to an infrastructure network) are used
to cache and distribute data files. To increase the reliability
of transmissions within the storage community, packet level
erasure coding is investigated in [8].

In this paper, we concentrate on a system consisting of
a base station and a set of mobile users within the range
of the base station, forming a D2D storage community. The
community consists of mobile users that will, sooner or later,
leave the system. In order to avoid losing stored data files,
redundancy can be added to the stored data. The simplest way
to do this is to store several copies of the files. However,
erasure coding can increase the performance of distributeddata

storage [9]. Further, codes that are tailor-made for distributed
storage can improve system performance [10].

We apply regenerating codes [11] to a D2D storage com-
munity and assess their performance. In [12], we investigated
a similar system, under more complicated assumptions. Here,
we assume a wide-sense stationary storage community, with
a constant expected number of nodes. We assume that the
community is able to recover and regenerate the lost data
after each single node departure before another departure takes
place . We concentrate on the communication cost incurred by
file requests and storage regeneration, assuming that the nodes
have infinite storage capacities.

We find that, under the considered system assumptions,
the simplest method of storing redundancy, i.e. storing one
redundant replica of a file, is also the optimal method in terms
of energy consumption.

It should be noted that, in this paper, we fully confine
ourselves to assessing the theoretical performance of the
storage and distribution methods at hand, and that we do
not discuss the practical implementation of such methods.
Likewise, we do not go into D2D device discovery, signaling,
synchronization, power control, code construction etc.

The remainder of this paper is organized as follows: Sec-
tion II explains the system model that we use throughout
this paper. Section III derives analytical expressions forthe
select distribution methods. Section IV shows both theoretical
and simulated numerical results. Finally, section V provides
concluding remarks.

II. SYSTEM MODEL

We consider a wireless cellular system where mobile de-
vices, referred to as nodes, roam freely in and out of a geo-
graphically limited area. We assume that the nodes themselves
can be used to store (cache) data and they can, upon request,
transmit data to one another.

A set of nodes that are within a specified distance from each
other forms a storage community, or a local network. The local
nodes can communicate with each other in D2D mode, without
the help of the base station. Also, the base station can be used
to transmit data to the nodes but there is no need to relay data
from a node to another node via the base station.

http://arxiv.org/abs/1309.6123v1
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Fig. 1. An example realization of the number of nodes in the system. Here
the expected number of nodes isN = 100 and the expected node lifetime is
T = 10.

Nodes arrive in the system according to a Poisson process
with exponentially distributed inter-arrival times. The expected
time for which a single node sojourns in the system is denoted
by T , the expectednode lifetime. The expectednumber of
nodesin the system is denoted byN . By Little’s law [13], the
arrival rate of the nodes isN

T
. The expected inter-arrival time

of two consecutive nodes isT
N

, which is also the expected
time between two consecutive node departures. These times
are exponentially distributed. The flow into system equals the
flow out of the system, and the number of nodes fluctuates
aroundN . Fig. 1 exemplifies this fluctuation.

The time development of the number of local nodes can,
thus, be described with the M/M/∞ Markov model, depicted
in Fig. 2. The steady-state probabilities for the M/M/∞ model
are well-known [14]. The probability that there arei nodes in
the system is

π(i) =
N i

i!
e−N . (1)

We assume that local nodes themselves can be used to cache
data. For simplicity, we assume that the storage capacity of
each node is infinite. We rationalize this by observing that
the storage capacity of mobile devices has been dramatically
increasing. This is why we presume that each node has some
free capacity that could be used for the common good.

NN−1 N+1... ...

Nλ Nλ Nλ Nλ

(N+2)λ(N+1)λNλ(N−1)λ

Fig. 2. The M/M/∞ Markov chain state diagram for the number of local
nodes. The name of the state corresponds to the number of nodes (blue). The
incoming rate (green) of the nodes is constant, whereas the outgoing rate (red)
is proportional to the number of nodes in the system. The expected number
of nodes isN andλ = 1/T .

The main motivation for assuming an infinite storage ca-
pacity is that the storage problem of multiple files decouples.
Accordingly, it is sufficient to consider the storage and distri-
bution problem of a single file, with a specified request rate.

We denote the request rate of one file by one local node
by ω. The inter-arrival time of two consecutive file requests
follow the exponential distribution with mean1

Nω
.

We normalize the size of the file to1 (bit). Similarly, we say
that the cost (in transmit energy) of transmitting one file from
a local node to another local node is also1 (joule). All the
simplifying assumptions mentioned here allow for tractable,
tangible results.

We assume that there is one data file. At random time
instants, local nodes request the file and download it. The
file can either be retrieved from the base station or from the
local nodes through D2D communications. It is, on average,
R times as expensive to download a bit from the base station
as compared to downloading a bit from another local node,
with R > 1. The caching model is depicted in Fig. 3.

The downloading node can download the file from the local
nodes only if the file is cached. In this paper, we compare two
caching methods:

• Simple caching: If the requested file is already cached on
another local node, the caching node transmits the file to
the requesting node in D2D mode. If the file is not cached
on any of the local nodes, the base station transmits the
file to the requesting node. Thence, the requesting node
caches the file and, later on, transmits it to other users
upon request. Only one local node at a time is caching
the data file and, thus, there is no redundancy.

• Redundant caching: A subset of the local nodes is used
to transmit parts of the file to the downloading node and
the original file is reconstructed at the downloading node.
Two or more nodes are caching the file or a fraction of
the file. One of the caching nodes is redundant.

The simplest way of redundant caching is allocating two exact
replicas of the whole file on two different nodes. We call this
method2-replication.

Retrieving a file from the base station is never beneficial as
long as the file is available in the storage community, and it
is more expensive to retrieve data from the base station than
to retrieve data from another node.

We assume that the file is always available – only the cost
(in transmit energy) and the data traffic load on the base station
change depending on the distribution method. Whether it is
beneficial to usesimple cachingor redundant cachingdepends
on the system parameters and the popularity (request rate) of
the requested file.

We define thecostas the expected total amount of transmit
energy per time unit that must be used by the local nodes
and the base station. Our objective is to find expressions for
the expected total cost of different distribution methods given
the system parametersR,N, ω andT . Eventually, we find the
distribution method that yields the smallest expected costgiven
the aforementioned system parameters.
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Fig. 3. A node (blue) requesting the file. Two local nodes (green) are caching
a copy of the file (2-replication). Other nodes (gray) stay idle. We say that
the cost of transmitting the file from a caching node is1, while the cost of
transmitting the file from the base station (BS) isR.

III. A NALYSIS

In this section, we derive closed-form expressions (approx-
imations) for the expected total costs of simple caching and
redundant caching. Later in this section, we compare these
methods with each other.

A. Simple caching

Initially, suppose that the file is already cached on one of the
local nodes. Thus, as long as the node that is caching the file
stays in the system, all file requests result in retrievals from
this node. There are on averageN local nodes that generate
requests, each at rateω, and the expected lifetime of any of
the nodes isT . Therefore, the expected number of requests
during the lifetime of the caching node isNωT .

Now suppose that the cost of retrieving the file (of size
1) from another local node is simply1. Hence, the expected
cost of downloading the file from the base station isR. If the
caching node has left the system, the next node that requests
the file has to download it from the base station. The expected
time in which this happens is1

Nω
as the expected total request

rate isNω. Thus, the time in which an expected number of
NωT+1 requests are generated isT+ 1

Nω
. The expected cost

of these requests isNωT+R and, thereby, the expected cost
of simple caching becomes:

Csc(R,N, ω, T ) =
NωT +R

T + 1

Nω

=
N2ω2T +RNω

1 +NωT
. (2)

B. Redundant caching

Here we use a(n, k, d) = (k+1, k, k) regenerating code
[11] to cache the file on a set of local nodes in a distributed
manner. Thus, anyk nodes that are caching an encoded
fraction of the file can be used to reconstruct or repair the
file. The file is fractioned intok encoded blocks and one
block is allocated tok+1 different caching nodes. One block
is redundancy, andk = 1, 2, 3, .... Hence, should any of the
caching nodes leave the system, the remaining (surviving) k

nodes can be used toregeneratethe lost block.
The repair bandwidth of a regenerating code is defined

as the number of data communicated when a lost block is
regenerated. As we consider infinite storage capacities, only
the repair bandwidth of is relevant. For this reason, we choose
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Fig. 4. Regenerating codes can be used to repair a lost encoded block
by only transmitting a number of data equal to the block size.The code that
achieves this property is called the Minimum Bandwidth Regenerating (MBR)
code (rightmost point). Traditional erasure coding (leftmost point) requires the
whole data object to be communicated. Here the file size (B) is 1.

to use the Minimum Bandwidth Regenerating (MBR) code
(see Fig. 4).

Whenever there is afailure, i.e. one of the caching nodes
leaves the system, the lost block is repaired to another local
node. This requiresγ(k) = 2

k+1
bits to be transmitted for

the MBR code with repair degreed = k [11]. The repair
bandwidth of an MBR code is equal to the size of the encoded
(cached) blockα(k). Thus, in total,kα(k) = kγ(k) = 2k

k+1

bits must be transmitted whenever a local node downloads the
file from a set ofk caching nodes.

Next, we derive an approximation for the expected cost of
redundant caching with the(k+1, k, k) regenerating code. We
note that the expected state of the system is such that there
areN nodes in the system andk+1 out of theseN nodes are
caching an encoded data block. The expected sojourn time
of all of theseN nodes in the system equals the expected
node lifetimeT . When one of these caching nodes leaves,
γ(k) = 2

k+1
bits need to be communicated in order to repair

the lost data block and store it on another node. Setting the
cost of transmitting a bit from a local node to another local
node to1, the expected repair cost becomes

Cx(k, T ) =
k + 1

T
× γ(k) =

k + 1

T

2

k + 1
=

2

T
, (3)

which is, interestingly, independent ofk, and equals the cost
of the repair process of 2-replication1 The process of 2-
replication is depicted in Fig. 5. Even though increasingk

decreases the repair bandwidthγ, it also increases the expected
number of failures, as a failure takes place whenever a caching
node leaves the system. These effects cancel out each other.

For simplicity, let us assume that the number of local
nodes never drops belowk and the repair process is so fast
(immediate) that no nodes leave the system before the repair
process is complete. Thence, we never need to reallocate data
from the base station, and only repairs incur upkeep costs.
Therefore, the expected cost per time unit of redundant caching

1The expected repair cost of 2-replication is2
T
×1 as there are two blocks,

each of size1 (the file size).
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becomes

Crc(k,N, ω, T ) = Nωkα(k) + Cx(k, T ) = Nω
2k

k + 1
+

2

T

as all requests result in local downloads and the expected cost
of retrieving (reconstructing) the file is2k

k+1
. It is easy to see

that Crc is minimized atk = 1. This is not a regenerating
code – the method that minimizes the expected total cost
of redundant caching is 2-replication. Note thatk=1 also
minimizes the probability that a file request results in a local
download. This is because in order for a local request to take
place, there must to be at leastk nodes in the system. The
expected cost of 2-replication becomes

C2-rep(N,ω, T ) = Nω +
2

T
. (4)

It should be noted that more than two copies of the file could
be replicated on the nodes. The derivation of the cost in this
case would be similar. Having more than just two copies of
the file would enable the system to withstand more than one
caching node leaving the system. However, as we assume
that the file can be repaired before another node leaves the
system, we restrict ourselves to the case where there is only
one redundant copy of the data file in the system.

Besides having the smallest possible repair bandwidth,
another benefit of 2-replication over regenerating codes isits
simplicity. There is no need to perform excessive computations
when the file is reconstructed or requested—the file is simply
copied from a caching to the requesting node. Similarly, at
repair, the file is simply copied to the newcomer node. See
Fig. 5 for an illustration of the repair process.

departure
repair

Fig. 5. Repair of 2-replication. If a caching node (orange) leaves the system,
the surviving caching node (green) can repair the file by sending a copy of
the file to an idle node. This node stores the copy and, thereby, becomes the
new caching node (newcomer, yellow).

If 2-replication is used, the file, or a redundant copy of the
file, needs to be reallocated from the base station only if the
number of nodes drops below two. According to (1), the prob-
ability of this is N+1

eN
. For largeN , we can approximate this to

be zero (for instance, already forN = 20, 21

e20
≈ 4.33×10−8).

This is the reason why we ignore the cost of reallocating
the file to the nodes from the base station. This is also the
reason why we assume that, when 2-replication is used, there
is always a node to which we can copy the file whenever a
caching node leaves the system. This allows us to approximate
the total repair cost in (3) as2

T
, as discussed earlier.

C. Comparison

Here we derive a straightforward decision rule on when
to use simple caching (without redundancy) and when to use
redundant caching (2-replication with one redundant copy).
Simply by settingCsc > C2-rep ((2), (4)), we find that
redundant caching outperforms simple caching if

NωT +R

T + 1

Nω

> Nω +
2

T
,

which yields

R > 3 +
2

NωT
. (5)

Fig. 6 shows the decision boundary of (5). It is interesting to
note that as long asR ≤ 3, the best method is, independently
of the other parameters, simple caching. Also, note thatNωT

can be interpreted as the expected number of file requests
made in the system during the lifetime of a single node. For
example, if the expected number of requests during the lifetime
of a node is greater than two,R ≥ 4 is enough to justify
redundant caching.
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Fig. 6. Cost ratio threshold. WheneverR > 3 +
2

NωT
(white region),

2-replication yields the lowest expected cost. Otherwise (red region), simple
caching should be used instead.

It might seem tempting to use redundant caching (2-
replication) over simple caching whenever condition (5) is
met. However, simple caching only takes up half of the storage
space of 2-replication. Consequently, simple caching can store
twice as many files as 2-replication. In addition, 2-replication
requires a D2D connection to be established for the repair
process whenever a caching node leaves the system.

Even though D2D data distribution may reduce the traffic
load on the base station and decrease the overall power con-
sumption, it should be noted that the power consumption of the
users that store and distribute data may increase considerably.
This is why the caching users should be provided with perks,
e.g. they could be granted more download bandwidth.

Table I concludes this section by comparing the expected
costs (or their approximations) of the considered caching
methods.
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TABLE I
COMPARISON OF CACHING METHODS

method caching nodes cost (per time)

base station only 0 RNω

simple caching 1
N

2
ω
2
T+RNω

1+NωT

2-replication 2 ≈ Nω +
2

T

regenerating code k + 1 ≥ 3 ≈ Nω 2k

k+1
+

2

T

IV. N UMERICAL RESULTS

This section provides simulation results of the expected cost
for simple caching and 2-replication. All the simulations are
conducted over2000T time units, whereT is the expected
node lifetime, and the average cost per time unit over the runs
is presented. Simulation results are compared with the theo-
retical results. Overall, it can be concluded that the expected
theoretical values coincide with the average simulated values.
However, there is some (yet negligible) discrepancy due to the
random nature of the simulations.

Figures 7 and 8 illustrate the expected theoretical costs and
the average simulated costs as functions of the expected cost
ratio R and the expected number of nodesN , respectively.
The expected cost behaves similarly as a functionN andω

(see Table I).
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Fig. 7. Expected cost vs. cost ratioR with parameter valuesN = 100, ω =

0.5 andT = 0.02. The cost of simple caching is linear w.r.t.R, while the
cost of 2-replication is practically independent ofR. The simulation results
are well in line with Equation (5); 2-replication outperforms simple caching
as long asR > 3 +

2

NωT
= 5.

Finally, Fig. 9 shows the expected theoretical costs and
the average simulated costs as functions of the expected
node lifetimeT . As T tends to infinity, the expected cost
of simple caching tends to that of 2-replication, namely,Nω

(Table I). This means that if the nodes stay in the system
for a long period of time, all the file requests result in local
downloads from the caching nodes and the distribution method
is irrelevant. Conversely, ifT tends to0, the expected cost of 2-
replication tends to infinity, while the expected cost of simple
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Fig. 8. Expected cost vs. expected number of nodesN with parameter values
R = 5, ω = 0.5 andT = 0.02.
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Fig. 9. Expected cost vs. expected node lifetimeT with parameter values
R = 5, N = 100 andω = 0.5. As T tends to infinity, the expected cost of
simple caching tends toNω = 50 as does that of 2-replication (Table I). As
T tends to0, the expected cost of 2-replication tends to infinity, whilethe
expected cost of simple caching tends toRNω = 250 (2).

caching tends toRNω (2). Thus, 2-replication should not be
used for highly unstable systems with short node lifetimes –
a short node lifetime implies a high departure rate of caching
nodes and, consequently, a high repair cost.

V. CONCLUSIONS

We have shown that, for the(k+1, k, k) regenerating code,
the expected total repair bandwidth is practically independent
of k and coincides with that of 2-replication. Also, we have
demonstrated that, under our assumptions, the expected total
cost of 2-replication is lower than that of the aforementioned
regenerating code. Finally, we have found a simple decision
rule for choosing between simple caching and 2-replicationin
order to minimize the expected total cost in terms of energy
consumption.
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[12] J. Pääkkönen, P. Dharmawansa, C. Hollanti, and O. Tirkkonen, “Dis-
tributed Storage for Proximity Based Services,” inProc. IEEE Swedish
Communication Technologies Workshop, October, 2012, pp. 30-35.

[13] Allen, A. O., Probability, Statistics, and Queueing Theory: With Com-
puter Science Applications.Gulf Professional Publishing, 1990, pp. 259.

[14] P. Harrison, and N. M. Patel,Performance Modelling of Communication
Networks and Computer Architectures.Addison-Wesley, 1992, pp. 173.



www.manaraa.com

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
40

60

80

100

120

140

160

180

200

220

240

file request rate ω

Expected cost vs. file request rate

 

simple caching (theory)
2−replication (theory)
simple caching (simulation)
2−replication (simulation)


	I Introduction
	II System Model
	III Analysis
	III-A Simple caching
	III-B Redundant caching
	III-C Comparison

	IV Numerical Results
	V Conclusions
	References

